

Mr. Sam Chummar Remedial Project Manager USEPA Region 5 Superfund Division Remedial Response Section #1 77 W. Jackson Blvd. (SR-6J) Chicago, IL 60604 ARCADIS of New York, Inc. 6723 Towpath Road Syracuse New York 13214-0066 Tel 315.446.9120 Fax 315.449.0017 www.arcadis-us.com

INDUSTRIAL

Subject

Georgia-Pacific Corporation Time Critical Removal Action Monthly Progress Report #4

Dear Mr. Chummar:

Attached is the fourth monthly progress report for the Time Critical Removal Action (TCRA) at the Georgia-Pacific Corporation (Georgia-Pacific) Kalamazoo Mill Property and the former Hawthorne Mill Property (collectively referred to as the Mill Properties). The Mill Properties are associated with the Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site. This report has been prepared pursuant to the Administrative Settlement Agreement and Order on Consent (AOC), Docket No. V-W-'07-C-858, and covers activities from February 10, 2007 through March 16, 2007.

Sincerely,

ARCADIS of New York, Inc.

Patrick N. McGuire

Associate

Copies:

Eileen L. Fury, Esq., USEPA - Region 5
J. Michael Davis, Esq., Georgia-Pacific Corporation
L. Chase Fortenberry, P.G., Georgia-Pacific Corporation
Keith M. Krawczyk, MDEQ-RRD-Superfund
Matthew Bowman, ARCADIS BBLES
Christie Sobol, ARCADIS BBL

Date:

26 March 2007

Contact:

Patrick N. McGuire

Phone:

315.671.9233

Email

Pat.McGuire@arcadisus.com

Our ref:

B0066105.001

I. Significant Developments

Actions Performed

- Removal activities at the Oxbow Area are complete. A total of 17,488 loose cubic yards (cy) of soil/residuals have been removed from the Oxbow Area and consolidated at A-Site.
- Excavation activities continued at the Refuse Area, to date a total of 33,203 loose cy of soil/residuals have been removed; of which approximately 200 cy of soil/residuals were stockpiled onsite for offsite disposal and the remaining soil/residuals were consolidated at A-Site.
- During the previous reporting period treated water samples were collected on January 15, 19, 25, 29 and February 5. These samples were submitted to Severn Trent Laboratories (STL) for polychlorinated biphenyl (PCB) and total suspended solids (TSS) analyses. The analytical data indicated PCBs and TSS met discharge requirements.
- On February 13, 15, 21, 24 and 28 verification soil samples were collected from the Refuse and Oxbow Areas and sent to STL for PCB analysis, with twenty percent of the verification samples selected for TCL/TAL analyses.
- February 13 through 26, conducted topsoil backfilling activities at the Oxbow Area.
- On February 15, began backfilling the Refuse Area with topsoil.
- On February 15 and 16, removed the Transformer Pad Area. Soils were characterized then transported to C&C Landfill located in Marshall, Michigan.
- February 19 through 26, removed the excavator turn-around pad at the Oxbow Area.
- February 20 through 26, installed the turbidity curtain and debris catch at the Refuse Area after receiving USEPA approval.
- February 21 and 22, chipped trees and stumps, wood chips were relocated to A-Site and used for stabilization.
- On February 22 and March 2, 6-10 and 12-14 conducted turbidity monitoring in the Kalamazoo River.
- On February 28 through March 1, test pits were constructed to locate the
 wastewater pipeline for removal. The original waste water pipeline was
 removed on March 2 through 7. The excavated material was
 consolidated at A-Site and the trench was backfilled.
- On March 2, 5 and 6, soil verification samples from the wastewater pipeline trench (9) and sent to STL for PCB analysis, with twenty percent of the verification samples selected for TCL/TAL analyses.
- On March 2, installed rip rap at the Refuse Area.
- On March 6, removed the turbidity curtain from the Kalamazoo River at the Refuse Area.
- On March 7, 13 and 15 treated water samples were collected and sent to STL for PCB and TSS analyses.

- On March 8, test pits were constructed to evaluate the extent of the residual layer east of the lift station power poles near the Refuse Area.
- On March 8, 15 over packed drums were sampled with USEPA and Michigan Department of Environmental Quality (MDEQ) oversight and submitted to STL for PCB and waste characterization analyses (i.e., Toxicity Characteristic Leaching Procedure [TCLP] analyses for VOCs, SVOCs, metals, pesticides; and Resource Conservation and Recovery Act (RCRA) hazardous characteristic analyses).
- On March 8, soil samples (10) were collected from the Transformer Pad area and submitted to STL for PCB and with twenty percent of the samples selected for TCL/TAL waste characterization analyses (i.e., TCLP analyses for VOCs, SVOCs, metals, pesticides; and Resource Conservation and Recovery Act (RCRA) hazardous characteristic analyses).
- On March 9 through 15, removed sections of the wastewater pipeline per the TCRA Addendum. Pipe removal activities were stopped when the amount of water in the pipeline exceeded diversion capabilities. The excavated material was consolidated at A-Site and the trench was backfilled.
- On March 10, 13, 14 and 15, soil verification samples (10) were collected from the wastewater pipeline trench and sent to STL for PCB analysis, with twenty percent of the verification samples selected for TCL/TAL analyses.
- On March 12, a buried structure was found at the west end of the original wastewater pipeline containing residuals. On March 13 and 14, structure was emptied and removed and the structure and contents were consolidated at A-Site.
- On March 12 and 13, deconstructed sand ramp at the Refuse Area staging pad.
- On March 13, discharged 15,728 gallons of treated water into Davis Creek after confirming treated water met discharge requirements.
- On March 16, began removing stockpiled material from the Refuse Area to C&C Landfill.
- On March 16, began replacing and repairing sections of the perimeter fence that was removed or damaged during construction activities.
- Continued air and dust monitoring programs, in accordance with the Time Critical Removal Action Work Plan for the Refuse Area at the Georgia-Pacific Corporation Kalamazoo Mill Property and the Oxbow Area at the Former Hawthorne Mill Property (TCRA Work Plan).
- Continued consolidation and grading activities at A-Site; due to wet conditions Class II sand was used for stabilization.
- Monitored weather conditions daily to anticipate potential inclement weather.

Problems Encountered

- Ice on the Kalamazoo River created a potentially unsafe situation for conducting turbidity monitoring; therefore turbidity monitoring was not conducted between February 6 and February 21. However, prior to February 6 and after February 21 turbidity monitoring was conducted in accordance with the TCRA Work Plan.
- The water levels in the wastewater pipeline exceeded diversion capabilities and removal activities ceased.

Analytical Data Received

- Analytical data for the air samples collected during the previous reporting period (taken three times daily, in accordance with the TCRA Work Plan) are presented in Table 1. All results are below the criteria set forth in the TCRA Work Plan. The air samples submitted for analysis during this reporting period, for which there are currently no validated data, are also identified in Table 1.
- Analytical data for the verification soil samples collected during the
 previous reporting period are presented in Table 2. PCBs were either not
 detected or below 1 milligram/kilogram (mg/kg) in 17 of the 18 samples
 submitted. PCBs were detected at an estimated concentration of 1.5
 ppm in the soil sample collected at location 60 of the Refuse Area;
 however PCBs were not detected in the duplicate sample collected from
 this location. The verification soil samples submitted for analysis during
 this reporting period, for which there are currently no validated data, are
 also identified in Table 2.
- Table 3 summarizes the analytical data for the treated water samples collected during the previous reporting period. The treated water samples submitted for analysis during this reporting period, for which there are currently no validated data, are also identified in Table 3.
- Analytical data for other samples (e.g., soil waste characterization samples and water characterization samples) collected during the previous reporting period are presented in Table 4. The other samples collected submitted for analysis during this reporting period, for which there are currently no validated data, area also identified in Table 4.

II. Developments Anticipated

Schedule of Actions to be Performed

- Continue removal, sampling and backfill activities for the waste water pipeline. On March 19, construction activities will temporarily stop and resume when local frost laws limiting truck load weight are lifted and the Kalamazoo River water level recedes.
- Continue excavation of wastewater pipeline if water levels recede.
- Continue air and dust monitoring programs.
- Complete installation of perimeter fence that was removed during construction activities
- · Continue demobilization activities.

Anticipated Problems

None.

Planned Resolutions of Past or Anticipated Problems

- On March 8, a test pit was dug to determine the extent of the residual layer found extending into the electrical pole area north of the lift station.
 The USEPA and MDEQ were in agreement that the residual layer did not extend eastward outside of the area.
- Ice on the Kalamazoo River created a potentially unsafe situation for conducting turbidity monitoring; therefore turbidity monitoring was not conducted between February 6 and February 21. Turbidity monitoring was able to be resumed on February 22 at the time river bank excavation activities began.
- A debris catch was installed to protect the turbidity curtain from ice flow in the Kalamazoo River.
- Cease excavation of the wastewater pipeline until water levels recede.

Tables

Table 1. Air Monitoring Sample Results, Time Critical Removal Action – Kalamazoo Mill and Former Hawthorne Mill Properties, Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site

Sample ID	Sample Location	Sample Date	PCB Concentration (μg/m³)	
G53080	AST-PUF-PRE	11/16/06	0.0024	
G53081	HWY-PUF-PRE	11/16/06	0.0117	
G53082	AST-PUF-001	11/28/06	0.0045	
G53083	HWY-PUF-001	11/28/06	0.0012	
G53084	BKG-PUF-001	11/28/06	0.0009	
G53085	AST-PUF-002	11/29/06	0.0025	
G53086	HWY-PUF-002	11/29/06	0.0061	
G53087	BKG-PUF-002	11/29/06	0.0035	
G53088	AST-PUF-003	11/30/06	0.0023	
G53089	HWY-PUF-003	11/30/06	0.0092	
G53090	BKG-PUF-003	11/30/06	0.0034	
G53091	AST-PUF-004	12/1/06	0.0005	
G53092	HWY-PUF-004	12/1/06	0.0022	
G53093	BKG-PUF-004	12/1/06	0.0004	
G53094	AST-PUF-005	12/2/06	0.0008	
G53095	HWY-PUF-005	12/2/06	0.0011	
G53096	BKG-PUF-005	12/2/06	0.0004	
G53097	AST-PUF-006	12/5/06	0.0005	
G53098	HWY-PUF-006	12/5/06	0.0008 J	
G53099	BKG-PUF-006	12/5/06	0.0009	
G53100	AST-PUF-007	12/6/06	0.0004	
G53101	HWY-PUF-007			
G53102	BKG-PUF-007	12/6/06	0.0017 0.0008	
G53103	AST-PUF-008	12/7/06	0.0005	
G53104	HWY-PUF-008	12/7/06	0.0018	
G53105	BKG-PUF-008	12/7/06	0.0005	
G53106	AST-PUF-009	12/8/06	0.0003	
G53107	HWY-PUF-009	12/8/06	0.0012 J	
G53108	BKG-PUF-009	12/8/06	ND	
G53109	AST-PUF-010	12/9/06	ND	
G53110	HWY-PUF-010	12/9/06	0.0012 J	
G53111	BKG-PUF-010	12/9/06	ND	
G53018	BKG-PUF	12/12/06	0.0008	
G53019	HWY-PUF	12/12/06	0.0027	
G53020	AST-PUF	12/12/06	0.0015	
G53030	BKG-PUF	12/13/06	ND	
G53031	HWY-PUF	12/13/06	0.0015	
G53032	AST-PUF	12/13/06	0.0033	
G53033	HWY-PUF	12/14/06	0.0026	
G53034	AST-PUF	12/14/06	0.0008	
G53035	BKG-PUF	12/14/06	0.0017	
G53036	HWY-PUF	12/15/06	0.0029	
G53037	AST-PUF	12/15/06	0.0013	
G53038	BKG-PUF	12/16/06	0.0006	
G53039	HWY-PUF	12/16/06	0.0027	
20000	AST-PUF	12/16/06	0.0015 J	

Table 1. Air Monitoring Sample Results, Time Critical Removal Action – Kalamazoo Mill and Former Hawthorne Mill Properties, Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site

Sample ID	Sample Location	Sample Date	PCB Concentration (µg/m³)	
G53041	BKG-PUF	12/19/06	0.0005	
G53042	HWY-PUF	12/19/06	0.0019	
G53043	AST-PUF	12/19/06	0.0007	
G53044	BKG-PUF	12/20/06	ND	
G53045	HWY-PUF	12/20/06	0.0020	
G53046	AST-PUF	12/20/06	ND J	
G53067	BKG-PUF	12/21/06	0.0027	
G53068	HWY-PUF	12/21/06	0.0020	
G53072	BKG-PUF	12/22/06	0.0005	
G53073	HWY-PUF	12/22/06	0.0026	
G53074	BKG-PUF	12/28/06	0.0009 J	
G53075	HWY-PUF	12/28/06	0.0017	
G53077	BKG-PUF	12/29/06	0.0007	
G53078	HWY-PUF	12/29/06	0.0022	
G53079	AST-PUF	12/29/06	0.0011 J	
G53112	BKG-PUF	12/30/06	0.0004 J	
G53113	HWY-PUF	12/30/06	0.0020	
G53114	AST-PUF	12/30/06	0.0004 J	
G53117	BKG-PUF	1/4/07	0.0010 JN	
G53118	HWY-PUF	1/4/07	0.0008 JN	
G53119	AST-PUF	1/4/07	ND	
G53120	BKG-PUF	1/5/07	0.0012 JN	
G53121	HWY-PUF	1/5/07	0.0011 J	
G53122	AST-PUF	1/5/07	0.0007 J	
G53125	BKG-PUF	1/6/07	0.0030 J	
G53126	HWY-PUF	1/6/07	0.0035 J	
G53127	AST-PUF	1/6/07	0.0017 J	
G53128	BKG-PUF	1/9/07	ND	
G53129	HWY-PUF	1/9/07	0.0014	
G53130	AST-PUF	1/9/07	ND	
G53139	BKG-PUF	1/10/07	ND	
G53140	HWY-PUF	1/10/07	0.0015	
G53141	AST-PUF	1/10/07	0.0006	
G53147	BKG-PUF	1/11/07	0.0010 J	
G53148	HWY-PUF	1/11/07	0.0013	
G53149	AST-PUF	1/11/07	ND	
G53151	HWY-PUF	1/13/07	0.0015	
G53152	BKG-PUF 1/13/07		0.0012	
G53153	AST-PUF	1/13/07	0.0007	
G53156	BKG-PUF	1/17/07	ND	
G53157	HWY-PUF	1/17/07	0.0004	
G53158	AST-PUF	1/17/07	ND	
G53159	BKG-PUF	1/18/07	0.0019	
G53160	HWY-PUF	1/18/07	0.0004	
G53161	AST-PUF	1/18/07	ND	
G53167	BKG-PUF	1/19/07	0.0016	

Table 1. Air Monitoring Sample Results, Time Critical Removal Action – Kalamazoo Mill and Former Hawthorne Mill Properties, Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site

Sample ID	Sample Location	Sample Date	PCB Concentration (µg/m³)	
G53168	HWY-PUF	1/19/07	0.0009	
G53169	AST-PUF	1/19/07	0.0004	
G53170	BKG-PUF	1/23/07	0.0008 J	
G53171	HWY-PUF	1/23/07	0.0008	
G53172	AST-PUF	1/23/07	ND	
G53180	BKG-PUF	1/24/07	ND	
G53181	HWY-PUF	1/24/07	0.0010	
G53182	AST-PUF	1/24/07	0.0004	
G53187	HWY-PUF	1/25/07	0.0010	
G53188	AST-PUF	1/25/07	0.0004	
G53191	BKG-PUF	1/25/07	ND	
G53196	BKG-PUF	1/29/07	0.0006	
G53197	HWY-PUF	1/29/07	ND	
G53198	AST-PUF	1/29/07	ND	
G53200	BKG-PUF	1/30/07	ND	
G53201	AST-PUF	1/30/07	ND	
G53202	BKG-PUF	2/1/07	ND	
G53203	AST-PUF	2/1/07	0.0002	
G53204	BKG-PUF	2/2/07	0.0008 J	
G53205	AST-PUF	2/2/07	ND	
G53208	BKG-PUF	2/4/07	ND	
G53206	AST-PUF	2/5/07	ND	
G53219	AST-PUF	2/7/07	ND	
G53220	AST-PUF	2/8/07	ND	
G53223	AST-PUF	2/9/07	ND	
G53224	BKG-PUF	2/13/07	ND	
G53225	AST-PUF	2/13/07	ND	
G53228	BKG-PUF	2/14/07	-	
G53229	HWY-PUF	2/14/07	_	
G53230	AST-PUF	2/14/07	_	
G53234	BKG-PUF	2/15/07	_	
G53235	HWY-PUF	2/15/07	_	
G53236	AST-PUF	2/15/07	_	
G53237	BKG-PUF	2/16/07	_	
G53238	HWY-PUF	2/16/07	_	
G53239	AST-PUF	2/16/07	_	
G53240	BKG-PUF	2/17/07	_	
G53241	HWY-PUF	2/17/07	_	
G53242	AST-PUF	2/17/07	_	
G53248	BKG-PUF	2/22/07	_	
G53249	HWY-PUF	2/22/07	_	
G53251	BKG-PUF	2/24/07	_	
G53252	HWY-PUF	2/24/07	<u> </u>	
G53254	BKG-PUF	2/27/07	_	
G53255	HWY-PUF	2/27/07	_	
G53260	BKG-PUF	2/28/07		

Table 1. Air Monitoring Sample Results, Time Critical Removal Action – Kalamazoo Mill and Former Hawthorne Mill Properties, Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site

Sample ID	Sample Location	Sample Date	PCB Concentration (μg/m³)
G53261	HWY-PUF	2/28/07	_
G53262	BKG-PUF	3/1/07	-
G53263	HWY-PUF	3/1/07	-
G53264	HWY-PUF	3/2/07	-
G53265	BKG-PUF	3/6/07	-
G53266	HWY-PUF	3/6/07	-
G53267	BKG-PUF	3/7/07	-
G53268	HWY-PUF	3/7/07	-
G53269	AST-PUF	3/7/07	-
G53310	BKG-PUF	3/10/07	_
G53311	HWY-PUF	3/10/07	-
G53312	AST-PUF	3/10/07	-

Notes:

 = These samples were submitted for analysis this reporting period. This data will be presented in the next monthly progress report after the validation process has been completed.

ND = Analyte was not detected.

JN = The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.

J = The compound was positively identified; however, the associated numerical value is an estimated concentration only.

Table 2. Verification Soil Sample Results, Time Critical Removal Action – Kalamazoo Mill and Former Hawthorne Mill Properties, Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site

Sample ID	Sample Location	Sample Date	PCB Concentration (μg/Kg)	
G53021	Oxbow 142	12/12/06	ND	
G53022	Oxbow 104	12/12/06	ND	
G53023	Oxbow 105	12/12/06	ND	
G53024	Oxbow 83	12/12/06	ND	
G53025	Oxbow 84	12/12/06	ND	
G53026	Oxbow 86	12/12/06	ND	
G53027	Oxbow 68	12/12/06	ND	
G53028	Oxbow 47	12/12/06	ND	
G53029	Oxbow 47 DUP	12/12/06	ND	
G53047	Oxbow 44	12/20/06	ND	
G53048	Oxbow 12	12/20/06	ND	
G53049	Oxbow 10	12/20/06	ND	
G53050	Oxbow 26	12/20/06	ND	
G53051	Oxbow 59	12/20/06	ND	
G53052	Oxbow 8	12/20/06	ND	
G53053	Oxbow 6	12/20/06	ND	
G53054	Oxbow 22	12/20/06	ND	
G53055	Oxbow 21	12/20/06	ND	
G53056	Oxbow 21 DUP	12/20/06	ND	
G53057	Oxbow 37	12/20/06	ND	
G53058	Oxbow 35 MS/MSD	12/20/06	ND	
G53059	Oxbow 54	12/20/06	ND	
G53060	Oxbow 52	12/20/06	ND	
G53061	Oxbow 18	12/20/06	ND	
G53062	Oxbow 17	12/20/06	ND	
G53063	Oxbow 1	12/20/06	ND	
G53064	Oxbow 2	12/20/06	ND	
G53065	Oxbow 2 DUP	12/20/06	ND	
G53066	Oxbow 3	12/20/06	ND	
G53069	Oxbow 45	12/21/06	ND	
G53070	Oxbow 156	12/21/06	ND	
G53071	Oxbow 173	12/21/06	ND	
G53131	Oxbow 95	1/9/07	143	
G53132	Oxbow 95 DUP	1/9/07	179	
G53133	Oxbow 94	1/9/07	ND	
G53134	Oxbow 75 MS/MSD	1/9/07	ND	
G53135	Oxbow 96	1/9/07	ND	
G53136	Oxbow 98	1/9/07	ND	
G53137	Oxbow 157	1/9/07	ND	
G53138	Oxbow 158	1/9/07	ND	
G53142	Oxbow 144	1/10/07	ND	
G53143	Oxbow 89	1/10/07	ND	
G53144	Oxbow 162	1/10/07	243	
G53175	Refuse 39	1/23/07	ND	
G53176	Refuse 33	1/23/07	ND	
G53177	Refuse 33 DUP	1/23/07	ND	

Table 2. Verification Soil Sample Results, Time Critical Removal Action – Kalamazoo Mill and Former Hawthorne Mill Properties, Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site

Sample ID	Sample Location	Sample Date	PCB Concentration (µg/Kg)	
G53178	Refuse 27	1/23/07	ND	
G53179	Refuse 20	1/23/07	28	
G53195	Oxbow 133	1/26/07	ND	
G53209	Refuse 12 MS/MSD	2/6/07	129	
G53210	Refuse 5	2/6/07	ND	
G53211	Refuse SW 53	2/6/07	ND	
G53212	Refuse SW 60 DUP	2/6/07	ND J	
G53213	Refuse 60	2/6/07	1,520 J	
G53214	Refuse Discrete Verification Sample	2/7/07	ND	
000211	Oxbow Discrete Verification	2,1701	112	
G53215	Sample	2/7/07	ND	
G53216	Oxbow 185	2/7/07	ND	
G53217	Oxbow 185 DUP	2/7/07	ND ND	
G53218	Oxbow 186	2/7/07	ND ND	
G53221	Refuse SW 51	2/8/07	ND ND	
G53222	Oxbow 160	2/8/07	ND ND	
G53226	Refuse 5	2/13/07	-	
G53227	Refuse 17	2/13/07	_	
033221	Refuse Pole Area Top Left	2/15/07	_	
G53231	Verification Sample	2/15/07	_	
000201	Refuse Pole Area Middle Middle	2/15/07	_	
G53232	Verification Sample	2/15/07		
G33232	Refuse Pole Area Bottom Right	2/13/07	_	
G53233	Verification Sample	2/15/07		
G53243	Oxbow 118	2/21/07	_	
G53244	Oxbow 117	2/21/07	_	
G53245	Oxbow 117 Oxbow 136 MS/MSD	2/21/07		
G53246	Oxbow 150 MS/NSD	2/21/07		
G33240	Refuse Discrete Verification	2/21/01	_	
G53247	Sample	2/21/07	_	
G53250	Oxbow 192	2/24/07	_	
G53256	Refuse 34 MS/MSD DUP	2/28/07		
G53256 G53257	Refuse 34 MS/MSD DUP	2/28/07		
G53257 G53258				
	Refuse 30 MS/MSD	2/28/07		
G53259	Refuse 29	2/28/07		
G53271	Waste Water Pipeline 1-1	3/2/07		
G53272	Waste Water Pipeline 1-5	3/2/07	-	
G53273	Waste Water Pipeline 1-7	3/2/07	-	
G53274	Waste Water Pipeline 1-9	3/2/07	-	
G53275	Waste Water Pipeline 1-11	3/2/07	-	
G53276	Waste Water Pipeline 1-13	3/5/07	-	
G53277	Waste Water Pipeline 1-15	3/5/07	-	
G53278	Waste Water Pipeline 1-27	3/6/07	-	
G53279	Waste Water Pipeline 1-28	3/6/07	-	
G53307	Waste Water Pipeline Dup 7	3/6/07	-	

Table 2. Verification Soil Sample Results, Time Critical Removal Action – Kalamazoo Mill and Former Hawthorne Mill Properties, Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site

Sample ID	Sample Location	Sample Date	PCB Concentration (μg/Kg)	
G53296	Transformer – 1	3/8/07	-	
G53297	Transformer – 2	3/8/07	-	
G53298	Transformer – 3	3/8/07	-	
G53299	Transformer – 4	3/8/07	-	
G53300	Transformer – 5	3/8/07	-	
G53301	Transformer – 6	3/8/07	-	
G53302	Transformer – 7	3/8/07	-	
G53303	Transformer – 8	3/8/07	-	
G53304	Transformer – 9	3/8/07	-	
G53305	Transformer – 11	3/8/07	-	
G53306	Transformer – Dup 7	3/8/07	-	
G53315	Addendum Pipe #2	3/10/07	-	
G53316	Addendum Pipe #7	3/10/07	-	
G53317	Addendum Pipe #11	3/14/07	-	
G53318	Addendum Pipe #14	3/13/07	-	
G53319	Addendum Pipe #20	3/13/07	-	
G53320	Addendum Pipe #23	3/14/07	-	
G53321	Addendum Pipe #27	3/14/07	-	
G53322	Addendum Pipe #31	3/14/07	-	
G53323	Addendum Pipe #35	3/15/07	-	
G53324	Addendum Pipe #38	3/15/07	-	
G53325	Addendum Pipe – Dup #7	3/10/07	-	

Notes:

 = These samples were submitted for analyses this reporting period. This data will be presented in the next monthly progress report after the validation process has been completed.

ND = Analyte was not detected.

J = The compound was positively identified; however, the associated numerical value is an estimated concentration only.

Table 3. Treated Water Results, Time Critical Removal Action – Kalamazoo Mill and Former Hawthorne Mill Properties, Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site

Sample ID	Sample Location	Sample Date	PCB Concentration (µg/I)
G53115	Treated Water Sample #1	1/3/07	0.222 J
G53146	Re-treated Water Sample #2	1/10/07	ND
G53150	Treated Water Sample #3	1/11/07	ND
G53154	Treated Water Sample #4	1/15/07	ND
G53162	Water Treatment System Carbon Tank A	1/19/07	ND
G53163	Water Treatment System Carbon Tank D	1/19/07	ND
G53164	Treated Water Sample #5a	1/19/07	ND
G53186	Treated Water Sample #5b	1/25/07	ND
G53199	Treated Water Sample #6	1/29/07	ND
G53207	Treated Water Sample #7	2/5/07	ND
G53270	Treated Water Sample #8	3/7/07	_
G53308	Treated Water Sample #9	3/13/07	_
G53313	Treated Water Sample #10	3/15/07	_

Notes:

 = These samples were submitted for analysis this reporting period. This data will be presented in the next monthly progress report after the validation process has been completed.

ND = Analyte was not detected.

J = The compound was positively identified; however, the associated numerical value is an estimated concentration only.

Table 4. Other Sampling Results, Time Critical Removal Action – Kalamazoo Mill and Former Hawthorne Mill Properties, Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site

	Sample ID									
			Soil Waste (Characterizatio	on Samples					
	G53076		G53124	G53192	G53278	G53300	G53317			
	Drum	G53123	Transformer	Transformer	Waste Water	Tranformer	Addendum			
	Refuse	Refuse Area	Area	Area	Pipeline 1 - 7	Area - 6	Pipe #11			
Constituent	12/28/06	1/5/07	1/5/07	1/25/07	3/2/07	3/8/07	3/14/07			
Polychlorinated Biphenyls	0.063	NA	8.5	NA	-	-	-			
Vinyl Chloride	ND	ND	NA	ND	-	-	-			
1,1-Dichloroethene	ND	ND	NA	ND	-	-	-			
2-Butanone	ND	ND	NA	0.017 J	-	-	-			
Chloroform	ND	ND	NA	ND	-	-	-			
Carbon Tetrachloride	ND	ND	NA	ND	-	-	-			
Benzene	ND	ND	NA	ND	-	-	-			
1,2-Dichloroethane	ND	ND	NA	ND	-	-	-			
Trichloroethene	ND	ND	NA	ND	-	-	-			
Tetrachloroethene	ND	ND	NA	ND	-	-	-			
Chlorobenzene	ND	ND	NA	ND	-	-	-			
Pyridine	ND	ND	NA	ND	-	-	-			
1,4-Dichlorobenzene	ND	ND	NA	ND	-	-	-			
2-Methylphenol	ND	ND	NA	ND	-	-	-			
4-Methylphenol	ND	ND	NA	ND	-	-	-			
Hexachloroethane	ND	ND	NA	ND	-	-	-			
Nitrobenzene	ND	ND	NA	ND	-	-	-			
Hexachlorobutadiene	ND	ND	NA	ND	-	-	-			
2,4,6-Trichlorophenol	ND	ND	NA	ND	-	-	-			
2,4,5-Trichlorophenol	ND	ND	NA	ND	-	-	-			
2,4-Dinitrotoluene	ND	ND	NA	ND	-	-	-			
Hexachlorobenzene	ND	ND	NA	ND	-	-	-			
Pentachlorophenol	ND	ND	NA	ND	-	-	-			
Arsenic	0.008 B	ND	NA	ND	-	-	-			
Barium	1.990	1	NA	0.343	-	-	-			
Cadmium	0.014 J	0.011	NA	0.027	-	=	=			
Chromium	0.060	0.006	NA	ND	-	-	-			
Lead	0.093	0.039	NA	3.530	-	=	-			
Mercury	ND	ND	NA	ND	-		-			
Selenium	ND	ND	NA	ND	-	=	=			
Silver	ND	ND	NA	ND	-	-	-			
Ignitability (°F)	>200	>200	NA	>200	-	-	-			
Corrosivity (pH)	8.1	7.5	NA	6.6	-	-	-			
Reactivity	ND ¹	ND ¹	NA	ND ¹	-	-	-			
Total Suspended Solids	NA	NA	NA	NA	-	=	=			

Table 4. Other Sampling Results, Time Critical Removal Action – Kalamazoo Mill and Former Hawthorne Mill Properties, Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site

				Samp	le ID			
			Wa	ater Character	ization Sam	ples		
	G53145 Oxbow	G53155 Oxbow	G53165 River Upstream	G53166 River Downstream	G53173 River Upstream	G53174 River Downstream		G53184 Refuse
Constituent	1/10/07	1/16/07	1/19/07	1/19/07	1/23/07	1/23/07	1/24/07	1/24/07
Polychlorinated Biphenyls	ND	ND	ND	ND	ND	ND	ND	0.0001
Vinyl Chloride	NA	ND	NA	NA	NA	NA	NA	ND
1,1-Dichloroethene	NA	ND	NA	NA	NA	NA	NA	ND
2-Butanone	NA	ND	NA	NA	NA	NA	NA	ND
Chloroform	NA	ND	NA	NA	NA	NA	NA	ND
Carbon Tetrachloride	NA	ND	NA	NA	NA	NA	NA	ND
Benzene	NA	ND	NA	NA	NA	NA	NA	ND
1,2-Dichloroethane	NA	ND	NA	NA	NA	NA	NA	ND
Trichloroethene	NA	ND	NA	NA	NA	NA	NA	ND
Tetrachloroethene	NA	ND	NA	NA	NA	NA	NA	ND
Chlorobenzene	NA	ND	NA	NA	NA	NA	NA	ND
Pyridine	NA	ND	NA	NA	NA	NA	NA	ND
1,4-Dichlorobenzene	NA	ND	NA	NA	NA	NA	NA	ND
2-Methylphenol	NA	ND	NA	NA	NA	NA	NA	ND
4-Methylphenol	NA	ND	NA	NA	NA	NA	NA	ND
Hexachloroethane	NA	ND	NA	NA	NA	NA	NA	ND
Nitrobenzene	NA	ND	NA	NA	NA	NA	NA	ND
Hexachlorobutadiene	NA	ND	NA	NA	NA	NA	NA	ND
2,4,6-Trichlorophenol	NA	ND	NA	NA	NA	NA	NA	ND
2,4,5-Trichlorophenol	NA	ND	NA	NA	NA	NA	NA	ND
2,4-Dinitrotoluene	NA	ND	NA	NA	NA	NA	NA	ND
Hexachlorobenzene	NA	ND	NA	NA	NA	NA	NA	ND
Pentachlorophenol	NA	ND	NA	NA	NA	NA	NA	ND
Arsenic	NA	0.007 B	NA	NA	NA	NA	NA	ND
Barium	NA	0.117 B	NA	NA	NA	NA	NA	0.084 B
Cadmium	NA	ND	NA	NA	NA	NA	NA	ND
Chromium	NA	0.004 B	NA	NA	NA	NA	NA	ND
Lead	NA	0.004 B	NA	NA	NA	NA	NA	0.005 B
Mercury	NA	ND	NA	NA	NA	NA	NA	ND
Selenium	NA	ND	NA	NA	NA	NA	NA	ND
Silver	NA	ND	NA	NA	NA	NA	NA	ND
Ignitability (°F)	NA	NA	NA	NA	NA	NA	NA	NA
Corrosivity (pH)	NA	NA	NA	NA	NA	NA	NA	NA
Reactivity	NA	NA	NA	NA	NA	NA	NA	NA
Total Suspended Solids	11	36.3	NA.	NA NA	NA	NA NA	NA	4.8

Table 4. Other Sampling Results, Time Critical Removal Action – Kalamazoo Mill and Former Hawthorne Mill Properties, Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site

	Sample ID								
		Water Ch	naracterization	Samples					
	G53185	G53189	G53190	G53193	G53194				
	River	River	River	River	River				
	Downstream	Upstream	Downstream	Upstream	Downstream				
Constituent	1/24/07	1/25/07	1/25/07	1/26/07	1/26/07				
Polychlorinated Biphenyls	ND	ND	ND	ND	ND				
Vinyl Chloride	NA	NA	NA	NA	NA				
1,1-Dichloroethene	NA	NA	NA	NA	NA				
2-Butanone	NA	NA	NA	NA	NA				
Chloroform	NA	NA	NA	NA	NA				
Carbon Tetrachloride	NA	NA	NA	NA	NA				
Benzene	NA	NA	NA	NA	NA				
1,2-Dichloroethane	NA	NA	NA	NA	NA				
Trichloroethene	NA	NA	NA	NA	NA				
Tetrachloroethene	NA	NA	NA	NA	NA				
Chlorobenzene	NA	NA	NA	NA	NA				
Pyridine	NA	NA	NA	NA	NA				
1,4-Dichlorobenzene	NA	NA	NA	NA	NA				
2-Methylphenol	NA	NA	NA	NA	NA				
4-Methylphenol	NA	NA	NA	NA	NA				
Hexachloroethane	NA	NA	NA	NA	NA				
Nitrobenzene	NA	NA	NA	NA	NA				
Hexachlorobutadiene	NA	NA	NA	NA	NA				
2,4,6-Trichlorophenol	NA	NA	NA	NA	NA				
2,4,5-Trichlorophenol	NA	NA	NA	NA	NA				
2,4-Dinitrotoluene	NA	NA	NA	NA	NA				
Hexachlorobenzene	NA	NA	NA	NA	NA				
Pentachlorophenol	NA	NA	NA	NA	NA				
Arsenic	NA	NA	NA	NA	NA				
Barium	NA	NA	NA	NA	NA				
Cadmium	NA	NA	NA	NA	NA				
Chromium	NA	NA	NA	NA	NA				
Lead	NA	NA	NA	NA	NA				
Mercury	NA	NA	NA	NA	NA				
Selenium	NA	NA	NA	NA	NA				
Silver	NA	NA	NA	NA	NA				
Ignitability (°F)	NA	NA	NA	NA	NA				
Corrosivity (pH)	NA	NA	NA	NA	NA				
Reactivity	NA	NA	NA	NA	NA				
Total Suspended Solids	NA	NA	NA	NA	NA				

Notes:

Concentrations are in parts per million (ppm) unless otherwise noted.

NA = Compound was not analyzed for.

¹The characteristic of reactivity is determined by measuring the release of cyanide or sulfide from the waste, both of which were not detected in the sample.

^{— =} These samples were submitted for analysis this reporting period. This data will be presented in the next monthly progress report after the validation process has been completed.

ND = Analyte was not detected.

B = The reported value was obtained from a reading less than the contract-required detection limit, but greater than or equal to the instrument detection limit.

J = The compound was positively identified; however, the associated numerical value is an estimated concentration only.